

Coin Acceptors (Europe) Ltd – Engineering Dept

9903-SWR-1.0

Source Code for
Vending Machine Coin Changer

Audit data Collection

Example Source Code For

DEX/UCS
 Audit Data

Retrieval

Coin Acceptors (Europe) Ltd – Engineering Dept

9903-SWR-1.0

DEX Audit Information

Introduction

This publication is intended to provide programmers with an interest in DEX audit data
collection, with a working example of a DEX audit application, from which they can develop
there own audit applications.

Scope

It is assumed that the reader of this publication will have access to the DEX/UCS specification, or
at least the EVA DTS specification. Since the example code is written in C/C++, a proficiency in
these languages is also required.

Coin Acceptors (Europe) Ltd – Engineering Dept

9903-SWR-1.0

DEX Audit Information

The “dexread.exe” example application

On the accompanying disk you will find both an executable copy and the source code for the
Dexread application. When running Dexread, you can issue a command line arguments, to
specify which communication port you wish to use for DEX communication. If you omit the
command line argument, Dexread will default to COM 1

Compiling the program.

On the accompanying disk you will find the following files.

dexread.ide - Borlands C++ project file
dex_audit.cpp - Main functions for Audit collection
includes.h - all necessary includes for main functions
pc_io.cpp - I/O routines for DOS operating systems
pc_io.h - Includes for IO routines.

These are the files that were used to build the Dexread application.
Notice that this is a DOS based application, so if you are not using the Borlands project file, you
should set your compilers target operating system to DOS.

About the Source Code

 The example source code was written and compiled using Borlands C++ v5.02. It has been
tested under Windows 95 operating system and works as expected.

 The source code provided can be used under the terms and conditions contained within the
disclaimer, however, it is strongly recommended that the reader optimize the code for his/her
specific needs, e.g. port it to Windows.

About the Flow Charts

 The flow charts have been produced to show the flow of the Dexread program. For simplicity,
the variable names used in the flowcharts have been kept the same as those used in the functions
supplied in the example source code. Also the program flow has been broken down into separate
flow charts representing the separate functions in the program.
 Flow charts for the IO routines have not bee included since these will vary depending on the
target platfor and operating system, and it was felt that the inclusion of these could draw the focus
away from the DEX routines.

Coin Acceptors (Europe) Ltd – Engineering Dept

9903-SWR-1.0

GetPort

Setvects()

init_serial();

SetforDEX()

Do_dex()

W ritedex()

i_Disable()

resvects()

GetPort

Setvects()

init_serial();

SetforDEX()

Do_dex()

W ritedex()

i_Disable()

resvects()

Main Program Function

GetPort

Setvects()

init_serial();

SetforDEX()

Do_dex()

W ritedex()

i_Disable()

resvects()

Begin

Coin Acceptors (Europe) Ltd – Engineering Dept

9903-SWR-1.0

Flu shCom()

ch = W ait(200)

if ch = ENQ

Send(ENQ)

dex_com = MASTERTRUE

if ch = DLE

FALSE

W ait
for

response

TRUE

dex_com = NAK

FAIL

dex_com = SLAVESUCCESS

DEX Commun ication
Failed

Master
Handshake

Third
Handshake

Slave
Handshake

SUCCESS

SUCCESS

FALSE

Master
Handshake

Third
Handshake

Slave
Handshake

SUCCESS

SUCCESS

Return
SUCCESS

Return
SUCCESS

Begin

Dodex

Coin Acceptors (Europe) Ltd – Engineering Dept

9903-SWR-1.0

Master Handshake

dex_com

Begin

Send (ENQ)MASTER

Send(ENQ)

response = wait(100)

response = wait(100)

SLAVE

response = wait(100)

Response

ELSE

W ait
for

Response
DLE

Master Handshake
Failed

Response
= 0x30

NO

Delay 15ms

Send(DLE)

Delay 15ms

Send(SOH)

Delay 15ms

data_string =
Changer is S lave

1234567890RR01L01

Send(DLE)

data_string =
 Changer is Master

"001234567890R01L01"

Calculate
CRC Check

for
data_string

send(data_string[i])

Delay 15ms

Delay 15ms

Send(ETX)

Send Upper
part of CRC checksum

Delay 15ms

Send Lower
part of CRC checksum

Delay 75ms

dex_com MASTER

SLAVE

Delay 15ms

Calculate
CRC ETX

Respone 1

Respone 2

ELSE

Response 1

ELSE

Response 2

DLE

Send (EOT)

Return
SUCCESS

Return
FAIL

FAIL

FAIL

0x31 0x30

NAK

Coin Acceptors (Europe) Ltd – Engineering Dept

9903-SWR-1.0

Slave Handshake
Begin

wait_for_
response

Delay 15ms

Response

ELSE

CRC (Response)

Wait_for_
response?

Return
FAIL

FAIL

FAIL

CRC (Response)

ELSE

W ait_for_
response?

CRC (Response)

ELSE

FAIL

Delay 15ms

Response

ELSE

Response

Return
SUCCESS

EOT

ELSE

ETX

NOT DLE
&

NOT STX
&

NOT SOH

ELSE CRC(Response)

Alternate_Answer(0)ENQ

ELSE

BCC altertnate_answer(1)NULL

Send(NAK)

Coin Acceptors (Europe) Ltd – Engineering Dept

9903-SWR-1.0

Third Handshake
Begin

wait_for_res ponse
(response)

response alternate_answer(0)

i = 0

response

response

lastfield = i

return
SUCCE SS

save_i = i
savefield=fieldlen
BCC = 0x0000

S TX

return
FAIL

1

1

1

ELSE

FA IL

ELSE

ELSE

ETX flowchart

1

ENQ

ETB flowchartETBETX

1

EOT

response
 !=DLE

&
!= SO H

1

F ALSE

NOT DLE & NO T SOH
Flow Chart

1

TRUE

Coin Acceptors (Europe) Ltd – Engineering Dept

9903-SWR-1.0

return
FAIL

crc_16(response)

wait_for_response
(response1)

wait_for_response
(response2)

ELSE
FAIL

FAIL

crc_16(response1)

crc_16(response2)

if
BCC=

0x0000

if block_number
= error

TRUE

i = save_i

send(NAK)

TRUE

alternate_answer(int(j%2));

j = j + 1

1

FALSE

block_number ++

Third Handshake - ETB

ETB

if
field[save_i]

!= NULL

FALSE

copy
"field[save_i]"

 to
"third_handshake_data"

TRUE

if k<i

free(field(k))

k++

TRUE

i = save_i
fieldlen=savefield

send(NAK)

FALSE

1

k = save_i

FALSE

Coin Acceptors (Europe) Ltd – Engineering Dept

9903-SWR-1.0

crc_16(response)

wait_for_response
(response1)

wait_for_response
(response2)

return
FAIL

FAIL

FAIL

crc_16(response1)

crc_16(response2)

if
BCC=

0x0000

alternate_an swer(int(j%2));

j = j + 1

1

if
field[save_i]

!= NUL L

copy
"field[save_i]"

 to
"third_handshake_data"

k = save_i

if k<i

free(field(k))

k++

TRUE

i = save_i
fieldlen=savefield

send(NAK)

FALSE

1

ELSE

TRUE

FALSE TRUE

FALSE

ETX

ELSE

Third Handshake - ETX

Coin Acceptors (Europe) Ltd – Engineering Dept

9903-SWR-1.0

Third Handshake - NOT DLE & NOT SOH

Response =
NOT DLE & NOT SOH

crc_16
(response)

Make Response
Upper CASE

feildlen++

third_handshake_data[feildlen] = response

response

third_handshake_data[fieldlen]=NULL;

LF

1

ELSE

Allocate enough memory in feild[i]
to store third_handshake_data +1

fieldlen = 0

feild[i] != NULL

copy third_handshake_data
to

feild[i]

TRUE

i+1 < MAX_FIELD

i++

*field[i] = NULL

TRUE

FALSE

outofmem = TRUE

FALSE

1

1

Coin Acceptors (Europe) Ltd – Engineering Dept

9903-SWR-1.0

send

while NOT
ready to send

Begin

If user hit
ESC

TRUE

output character to
required com port

return
0

FALSE

return
-1

TRUE

FALSE

send_no_delay

Begin

Delay 8ms

while NOT
ready to send

output character to
required com port

return
0

FALSE

TRUE

Coin Acceptors (Europe) Ltd – Engineering Dept

9903-SWR-1.0

wait_for_response

while
wait4(ch) = 0

user hit
 ESC

return
FAIL

TRUE

TRUE

return
SUCESS

Begin

wait4 Functions for reading DEX audit data

if(endbuf == startbuf)

Begin

ch = ESC

return
0

TRUE

ch = ccbuf[s tartbuf]

ELSE

startbuf++

return
1

